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J. Phys. A: Math. Gen. 14 (1981) 3181-3193. Printed in Great Britain 

On the stability of the motion of uncharged dipoles 

E H Lemke 
Florastrasse 88. Berlin DDR 1100 

Received 14 July 1980, in final form 26 May 1981 

Abstract. We examine the stability of the repulsive motion of an uncharged dipole along the 
axis of symmetry of a stationary dipole field. Then we let the dipole have a large initial spin 
about its axis of symmetry, establish the equations of motion in the external field, find three 
integrals, and construct the trajectory of the system. Finally, we allow the dipole to make a 
certain angle with the axis of symmetry of the mass distribution, at the same time separating 
the motion of the dipole from the fast rotations of the mass distribution. The dipole’s 
direction may be varied by inner forces. By this, the device becomes dirigible. 

1. Introduction 

The uncharged dipole can often be used to gain an approximate description of the 
behaviour of neutrons, dipole molecules, magnetic coils or solenoids. The motion of a 
dipole is more complicated than the motion of a point charge because two additional 
variables are necessary to fix the orientation of the dipole’s axis of symmetry. In an 
inhomogeneous external field, a small variation of the initial values of these variables 
can lead to a totally different motion after a short period of time. The interaction of the 
dipole with the external field is described by an energy expression of the form -MH, 
where M is the dipole moment and H the field strength. For the external field, we take 
the field of a finite current or charge distribution (with total charge being zero) at 
distances large in comparison with the dimensions of the distribution, i.e. the dipole 
field. 

To examine the deflection of a trajectory for small changes of the initial data, we 
choose the simplest trajectory of the dipole in the dipole field, i.e. the infinite rectilinear 
motion along the symmetry axis of the dipole field. The corresponding initial data are 
such that the axis of the dipole lies exactly on the axis of symmetry of the external field 
and the dipole is repelled. This motion is unstable in two ways: if the two axes of 
symmetry are not exactly parallel, the dipole begins to rotate and forces arise that move 
it from the axis of the external field; if the dipole does not lie exactly on the axis of the 
external field, it also moves away from it and begins to perform a complicated rotational 
motion (see 9 2). 

A large initial spin about the axis of the dipole will prevent the dipole from rotating 
about the axes perpendicular to it (§ 3). The external couple will now lead to small 
nutations of the dipole axis. The motion of the dipole axis is however more complicated 
than in the case of the symmetric heavy top or of the dipole spinning in a homogeneous 
field, since it gyrates in a field that is not simply homogeneous. We establish the 
equations of motion and find three distinct integrals in 0 3.3, which enable us to evaluate 
the trajectory of the system. 
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Once the direction of the dipole has been stabilised, the dipole is repelled with a 
maximum gain of energy. Small perturbations in its exact position on the symmetry axis 
of the external field and in the direction of its velocity will, however, generate forces that 
move the mass centre away from this axis. To obtain compensating forces, we allow (in 
0 4) for the possibility that the dipole can make an angle with the direction of spin, the 
angle being controlled by inner forces. At the same time we separate the motion of the 
dipole from the fast rotation of the fly-wheel. The dipole then ceases to be subjected to 
great centrifugal forces. It is shown that the two inner degrees of freedom can be used to 
pilot the device in a relatively aribtrary way. 

A note by Engelberger (1964) is partly related to 9 2. The author has recently 
applied 9 2.2 in astronautics (Lemke 1981). 

1.1. Basic equations and conventions 

The motion of the dipole depends on the mass distribution. In principle, the dipole can 
lie at any point of the rigid body. We will confine ourselves to the simple, though 
realistic, case where two centroidal principal moments of inertia are equal and the 
dipole rests in the mass centre. In § 2 and § 3 we let the dipole axis coincide with the 
third axis of the momenta1 ellipse, as is suggested by the symmetry of a dipole field. 

Let Oxyz be a right-handed system of rectangular axes fixed in the external field. 
The origin is taken to coincide with the centre of the field and the z axis with its axis of 
symmetry. In this system we use cylindrical coordinates z, r, 4 to determine the position 
of the mass centre of the dipole. These coordinates take into account the axial 
symmetry of the external field (ETb is zero and H, and H, do not depend on 4). In these 
coordinates the energy of translation is 

where m is the total mass of the dipole. 
Let O‘XYZ be another system of rectangular axes parallel to the respective axes of 

Oxyz but with origin 0’ located at the mass centre of the dipole. In this coordinate 
system, Euler angles (e ,  cp, $) define the position of the body, where 0 is the inclination 
of the third principal axis to the Z axis and cp is the direction of line of nodes in the X Y  
plane. The kinetic energy of motion relative to mass centre is then given by 

T,,, = 41(e’+  4’ sin’ 0)  +*I~(+ cos o + 4)’ (1.2) 

where I3  is the axial moment of inertia and I is the transverse moment of inertia at the 
mass centre. 

Let e be measured up from the upward vertical so that the dipole may be parallel to 
the dipole moment of the external field for 6 = 0 (it is then attracted). Moreover, let 
cp = 0 and 4 = 0 mean the same direction, say the positive X direction. The interaction 
term will then take the following form: 

M(H,e,  + Hp,) = MH,(z,  r )  cos 8 +MH,(z, I )  sin 0 sin(cp - 4) (1.3) 

where 4 - cp + 90” is the angle between the projection of M and H ( z ,  r )  on a plane 
z = constant. The dipole field is given by 

H, = ~ ( 2 z 2 - r 2 ) / ~ 5 ,  H, = m3zr/R5, (1.4) 
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where m is the dipole moment of the external field and R2 = z 2 +  r2 .  The Lagrange 
function L of our system is Ttrans+ Trot + MH which yields the equations of motion 
analysed in Q 2 and Q 3. 

Let zo,  the initial z value, be the typical length scale, and let us measure z ,  r and R in 
units of zo.  Moreover, we divide the Lagrangian by mz:  and define u2 = I / ( m z g )  and 
b=13 / I  so that ‘a’ and ‘b’ are dimensionless, and we let g = 6 M f i / ( m z i )  be a 
zo-dependent .‘coupling constant’ (dimension: time-2). 

2. Zero initial spin 

The I3  term of Trot, equation (1 ,2 ) ,  is assumed to be zero at the beginning of the motion; 
it remains zero because it is a constant of the motion. At first, we examine the infinite 
rectilinear motion, for which 0 = +T and r = 0. Then we consider the case where these 
identities are initially slightly perturbed. 

2.1. The infinite rectilinear motion 

For 0 = + 7~ and r = 0 the Lagrange function is very simple. It describes a rectilinear 
translatory motion of the mass centre along z .  The equation of motion is z = g / z 4 .  It 
shows that the acceleration of the dipole decreases rapidly with increasing z if an 
increase of g ,  i.e. M or m, does not compensate the zP4 fall-off. We shall, however, take 
g as time independent. Thus, the motion becomes quickly practically uniform. If the 
dipole has initially the velocity io, i(z) is given by 

i2 = $g(i - z P 3 ) + i ;  

so that 

Already at the position z = 2, velocity i is only about 6% smaller than i, if io = 0, and 
this deficit is less if i , > O .  The law of motion, z ( t )  or t ( z ) ,  cannot be expressed by 
elementary functions (see e.g. theorem of Tshebyshev). Let us however evaluate a 
characteristic time interval of the motion, e.g. the time t2 in which z doubles. We find 

t 2 -  (3/2g)”2 t (2  * 3) 

for io = 0, where the $ is an approximate value. 

2.2. The case of the rigid dipole axis 

If the dipole in the initial position eo= T does not lie exactly on the external field’s 
symmetry axis but has a small ro # 0, a small force F, is present. This moves the dipole 
away from the axis of symmetry as z increases, giving a plane curvilinear translatory 
motion. Let us consider the case where remains zero, that is, where the dipole keeps 
its initial orientation Bo = T. This case is reached in the limit a +CO,  i.e. for a mass 
distribution of very great dimensions, or where the 8 degree of freedom is well stabilised 
by a spin angular momentum in the position 0 - T (see § 3) .  
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The Lagrange function gives us the equations of motion 

-fz = g ( z 3 / ~ 7 ) ( 1  - 3  2r /z2),  i.‘-f, = g ( 2 r ~ ~ / ~ ’ ) ( 1  - i r2/z2) .  (2.4) 

On lines given by z = (3/2)1’2r, fz disappears, and on the less steep lines z = fr, f r  
disappears. We will only deal with a small initial coordinate roc< 1. Because f r / f i  is 
small (of the order of ro), r/z will remain small, at least in the region 1 c z 6 2. At  the 
larger values of 2, the forces are so weak (as we saw in Q 2.1) that they can change the 
momentum that the field has already imparted to the dipole only slightly. This means 
the trajectory remains in the sector r/z << 1 and we can expand (2.4) in terms of small 
r/z. 

In the following io = io = 0. The equation of the trajectory r(z) is then given by 

dr  f r  2 d2r Uo-  U 
dz fz fi dz2  l+(dr /dz)* 

where U is the potential energy, U = ig(22’- r2)/R5, and i2 has been eliminated by 
the energy integral. Initially, Uo- U is zero and thereafter small, so that the second 
term can be neglected; thus the initial trajectory follows the force line through (ro,zo). 
This means that d2r/dz2 is positive, so that at the larger values of z ,  where the second 
term must be taken into account, dr/dz is less than fr/fi. That is, the trajectory is steeper 
than the force lines that it intersects. For z - 2 the trajectory is near to  the asymptotic 
region, where it is practically straight. The value of (dr/dz)m is a characteristic quantity 
of the trajectory. To  find its dependence on ro (and zo)  let us rewrite (2.5) in the form 

d2r/dz2 = ( f r  - fzdr/dz) / i2 .  (2.6) 

The second derivative and the numerator of the RHS are small quantities. Hence, i2 can 
be replaced by its zero-order value (2.1): 

d2r 3 2 r - z  dr/dz 
d z 2 - 2 z 2  z 3 - l  ’ 

(2.7) 

Since d2r/dz2 is positive definite, 2r > z dr/dz which means that r cannot increase more 
strongly than 2’. This shows that d2r/dz2 decreases more strongly than z - ~ .  Hence 

dr(z) d2r x=l, dz‘dz+2ro  

very nearly equals its asymptotic value at z in the range of 2 to 3. For the evaluation 
of the integral it is thus important to know the second derivative as accurately as 
possible at z - 1. Expanding r(z)  in terms of small z - 1 and comparing the coefficients 
in (2.7) yields r = ro + 2ro(z - 1) +;ro(z - 1)2 + , , . . We substitute this result into the 
RHS of (2.7) and find d2r/dz2-2ro/3z2. This approximation is exact for z +  1. 
Therefore, it gives us the exact value of drldz, because the function j z  dz d2r/dz2 
disappears for z +CO.  Substitution into (2.8) yields 

dr/dz,= 2 ro ( l+ i )  (2.9) 

which shows that the initial inclination of the trajectory only increases by 2. As this 
increase is rather small, our approximations are valid so long as equation (2.7) is a good 
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approximation for equation (2.6) at ( z o ,  ro). This is the case with an accuracy better than 
20% for ro < f ? .  

2.3. The true motion 

A small ro, I T  - 8l0 or eo is sufficient to cause large changes in 8 while the dipole is 
pushed away to large z .  Angle 8 will pass ~ / 2 ,  0 and then even - 7~ because the forces 
acting on the dipole in the second half period 0 2 8 2 - T are weaker than those acting in 
the first half period T 3 8 0 at the beginning of the motion. That is, the dipole will 
perform rotational oscillations. The 8 changes are the faster the greater g (the external 
force) and the smaller a (the transverse radius of the body). If eo = 7r and eo S 0, we 
have sin(cp - 4) = 1 automatically at the beginning of the motion, since this is the 
minimum point of the potential energy. After 8 passes 8 = 0, the motion in cp and C#I 

however becomes unstable and rather complicated. Let us neglect the resulting small 
motions in cp and 4. The dipole's trajectory z ( r )  will then oscillate about a path that is 
similar to that described in 0 2.2. Asymptotically, the dipole will move under a certain 
positive inclination dr/dz, to the z axis and possess a certain angular momentum 
L = Ie, about the mass centre. 

3. Large initial spin-behaviour in O+X#J space 

To stabilise the direction of the dipole in the position in which it points vertically 
downward, we suppose the body to have a large angular velocity f13 about its axis of 
symmetry, 

a,=+ COS e + &  
6' will then only vary in a small interval near 8 - T and can be called the angle of 
nutation. As $ is an ignorable variable, fl, is a constant of the motion. (Thus the time 
dependence of + and cos 8 give the time dependence of $.) 

3.1. 

Because ro and T - 8 are small, we can, in a first approximation, neglect H, so that cp, 
too, becomes an ignorable variable (approximation of parallel field lines). The canoni- 
cal momentum integral conjugate to cp is 

+ sin2 8 + bn3 cos e = - b o 3  = -2w.  (3.1) 

(The third axis is assumed to be antiparallel to the z axis at time t = 0.) Using these 
equations, we eliminate (d in the energy integral, which gives us the following effective 

t In a numerical analysis of (2.7) it may be helpful to know that (2.7) can be integrated exactly once in the 
interesting region of small z - 1. In this region we have z 3  - 1 = 3(z - 1) + 3(z  - 1)2 + (z - 1)3 - 3z(z - 1) with 
good accuracy up to z - 1.6. Moreover, (2.7) is a first-order differential equation for y(z) = r-' dr/dz with 
the initial condition y(1) = 2. Approximating z 3  - 1 in the way indicated, (2.7) gives us a Riccati equation for 
y that can be solved by elementary functions. The solution is 

y =[l/(z-1)]{1-!~-~-tz-'[l+(~e)~'*s e-"" erf SI-'} 

where s2  = i(1- 2-l). This solution even exhibits the right asymptotic behaviour y - l/z, i.e. dr/dz = 
constant. 
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potential energy at small T -  e = 6: 
1 2 . 2 - 2 - 1  2 TU cp 0 2~ h,82=:a2(w2-h,)82, 

where h, = MHJI  has been defined. This expression is least at 8 = 0 provided w 2  > h,, 
which is the condition of stability for the 0 degree of freedom in the position Bo = T. As 
h, decreases with time, this condition is always satisfied provided it is satisfied at t = 0. 

For small initial eo, the variable 8 oscillates harmonically about the value 0 = 7 ~ .  The 
frequency is given by 

(3.2) W ; = W  2 -hz.  

The amplitude is of order eo/wo.  Let us use th& expression to compare the periodic 
time 2 n / w 0  with the characteristic time t ,  = 1/Jgof  the change in h, (see (2.3)). If the 
rotational energy $,Cl: is twice as large as the magnetic energy MHO, then 

wot, = (b - l)”2/(a&). (3.3) 
a&is just the transverse dimension of the body, which in practice will be much smaller 
than 1 (i.e. zO).  Hence, W O ’  will be much smaller than t ,  even if the rotational energy is 
only twice as large as the magnetic energy. 

3.2. The equations of motion 

Let us take into account the H, term. (3.1) is no longer a constant of the motion. As, 
however, f, +f+ = 0, there is an analogous constant. Fixing its value by the initial data 
BO = T, do = 0, we find 

4 = (a2/r2)e2( - (p  - w ) .  (3.4) 

The sum (F + w is of the order of magnitude of w, a high frequency, while, as we will see 
later on, the factor in front of the sum is much less than one. Hence 6, the angular 
velocity of mass centre about the z axis, is small compared with w .  

Let us write down the Lagrangian equations of motion for 6, cp and 4 :  
i?’= ((F2+2w(p+h,)8+h, sin(cp-+), (3.5a) 

d[(+ + w)G2]/dt = hre C O S ( ~  - $), (3.5b) 

d(r2&)/dt = -h,a26COS(cp - 4 ) ,  where h, = MHJI. (3.5c) 

The analysis of this system of three second-order differential equations is a complex 
task. First, let us establish the time dependence of the solution at the beginning of the 
motion for GO = 0, do = 0 and 6, = 0. We find 

(3.6a) 

so that i?’, i.e. e, is positive (see ( 3 . 5 ~ ) ) .  The value ( 3 . 6 ~ )  has already appeared in 5 2 ,  as 
the minimum of the potential energy in cp - 4. It now follows from ( 3 . 5 ~ )  that 8, = ihrt2, 
which we use in (3.5b) to find that 

(Fo = -3w. (3.6b) 

Substituting this result into (3.4) or (3.5c), we can find dl, which will be much smaller 
than (Fo. Define cp - 4 = a. Then CY = ~ / 2  - $wt + . . . which gives us 

PO - 40 = + .rr/2 

~ ~ ( O ) = $ ~ - f w ( 2 6 / h , ) ” ~ +  . . . (3.7) 
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for the trajectory a ( 0 ) .  At the beginning of the motion, + practically does not change 
while a (and cp) decrease as the negative of the square root of 8. 

3.3. Integrals 

We now consider the Ocp+ motion over a period of time At, t ,  >> A t  >> W O ’ ,  where r and z 
can be taken as constant (the greater wo, the closer this approximation will be, see 9 3.1) 
and derive the energy integral of the set of equations (3.5) from L. One finds that 

(3.8) 

if one makes use of the initial data do = io = go = 0 and eliminates 6 by (3.4). The 
equation shows that 8 must be finite. gmaX is obviously reached if the fourth-order 6 
term dominates the second-order 6 term. Then e reaches its maximum for sin a = 

1 , 0  = 0 and 4 = 0. We find 

(a/r)2e4(4 + w ) ~ +  e’+ (4’- h,)e2 = 2hr8sin a 

= (2h,/w2)(r/al2 t .  (3.9) 

If, however, 4 was able to reach the value - w ,  the second-order term would dominate 
and emax would have the value of 2h,/w2. Even for a lower value of w 2  which is given by 
w 2  - h,, this emax is small of the order of 2h,/h,, whereas gm,, - (2h,r2/h,) 
according to (3.9), which number, as we saw under (3.3), is indeed larger. This number 
must, of course, be much smaller than one for the expansion in terms of small 8 to 
remain applicable. 

Equations (3.4) and (3.8) are two integrals in the three-dimensional Ocp+ space. If 
we were able to find a third integral, the trajectory of the system could be constructed. 
Let us calculate the second time derivative of 8 cos a and eliminate di and (1; by (3.5): 

1/3 2/3 a 

d2 - d -  d - .  
-((e cos a )  = 2w-(O sin a)+- (O+ sin a )+ (2wd  + hZ)6cos a 
dt2 dt dt  

+ sin a + 846 cos a. 

Because of ( ~ S C ) ,  the third term, too, is, in the approximation of constant r and z ,  a time 
derivative. Furthermore, the last two terms can be neglected in relation to the first 
term, i.e. it can be shown that always /dl << w. Let us give a simple proof. Obviously, 
will not be larger than of order w.  Together with (3.9) this means that, in (3.4), 

141 < (2h,/h,)2/3(a/r)2/3w for w 2  as small as h,, (3.10) 

the factor of w being indeed small compared with 1, as we saw under (3.3). (Note: 

By this, we possess a third integral, which disappears for our initial data go = 8, = 
do = 0. We can simplify their form by introducing a dimensionless time T and a natural 8 
variable 6: 

hr /k  = O(r).) 

1 
t=-T, e = (h,/2w2)6 

2w 

(note that amax can be much larger than one). Rewriting the integrals in the new 

t If the rotational energy is sufficiently great, this expression will also give the approximate time dependence 
of J,,,,,. As U *  is a constant of the motion, g,,,,, changes like r/z4’3 with time. 
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variables yields 

(l/P)42+42+(+2-:Q)62= 6 sin a ,  ( 3 . 1 1 ~ )  

(l/P)&, = -a2(+ +$), (3.1 1 b) 

4 cos a - a(+ + 1) sin a = -(1/P)d2- (Q/P)& ( 3 . 1 1 ~ )  

where the derivatives are now with respect to T, and 

P = h?a2/4w4r2, Q h,/2w2. 

The case of a large spin corresponds to Q << 1. The evaluation (3.10) has shown that 
~ 2 a z / r 2 < <  1. In terms of 6 this is the same as 

Pa2<< 1. (3.10’) 

Instead of the second-order system (3.5) we can now examine the first-order system 
(3.11). The field of the gradients (d6, dcp, d 4 )  in the 6cp4 space depends only on 6 and 
a = cp - 4; it does not depend on cp + 4, the (cp + 4) axis being perpendicular to the 6 a  
plane. Studying the field of inclinations d a / d b  will thus provide a good idea of the form 
of the solution trajectory, which is a monotone, single-valued function of the length of 
its projection on the 6a plane (the function being defined on the cylindrical plane 
perpendicular to the 6a plane through this projection). 

3.4. Trajectories 

Let us first examine how the trajectory (3.7) continues in the region 6 << 1. Because of 
(3. lo’), we can neglect the 4 term in (3.1 1a)-it is much smaller than the RHS in our case 
of a. = r /2 .  Equally well, the Q term can be omitted, and also the 4 terms in ( 3 . 1 1 ~ ) .  
The 4 dependence of the trajectory is thus negligible even for values of 6 of the order of 
1; 4 can be regarded as constant. The remaining two equations can easily be solved: 

9- = a(+ + 1) tan a,  

+ = -sin2 a + cos a (6-l sin a - sin2 a)’”. 

( 3 . 1 2 ~ )  

(3.12b) 

Substituting expansion (3.7) into (3.12b), one can see that +(a) reproduces the value 
(3.6b), i.e. 40 = -$. The trajectories cannot pass the cylindrical plane 

a-’ = sin a, (3.13) 

which plane comes from infinite 6 at a = 7~ and departs to infinite 6 at a = 0. Moreover, 
the intersection of this plane with the 6cp plane is a trajectory, that is, this intersection 
satisfies equations (3.12). On this trajectory we have 4 = -sin2 a and 4 = cos a. A 
further characteristic structure of the gradient field dcp/d6 is the curve 

6 = l/sin a -sin cy, 0 s a == 7T/2 (3.14) 

on which + = 0 and 8 = cos a. For rr 3 a 2 rr/2, + is negative definite and does not 
vanish. A comparison of curve (3.14) with trajectory (3.7) shows that the trajectory lies 
at a somewhat larger a. The gradient field pertaining to system (3.12) is depicted in 
figure l ( a )  together with the other results. One sees that the solution passes between 
curves I1 and I11 to large 6 into a region of small 14 1 << 1. Our approximation is no longer 
valid in this region; the 4 terms begin to play an important role. 
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(cl1 ( b i  

Figure 1. ( a )  Gradient field in a plane @=constant ,  in which the solution trajectory 
approximately lies for small 19s 1. I is the solution at the beginning; I1 is the curve 
19 = l/sin a which is a boundary of the kinematic region and also a trajectory (4 = cos CY.@ = 
--sin2 U. 6 = -PO2(:-sin2 cy)); I11 is the curve @ = 0, 4 =cos a, I$ = - P e 2 / 2 ;  IV is the 
curve = 0, 4 = -1, d; = +P8’/2; V i s  the curve 4 = 0, 4 = -4, 4 = 4.9 tan CY. ( b )  Form of 
curve I11 ( M ,  = cos2 CY) at large 6 for P/4 = and Q = &. The inner kinematic limit (11) 
lies only a little to the left of curve 111, and touches it in its end point. The arrows indicate the 
inclinations of the trajectories on curve 111. On curve M ,  = 0, we have 4 = 0 and 4 = 0. 

Let us look for the continuation of line I11 in figure l(a). If one subtracts ( 3 . 1 1 ~ )  

(3.15) 

It shows that there is a curve (plane) 4 = 0 , 8  = cos CY not only for values of 6 6 1 but for 
all values of 6. This curve has the equation 

(3.14’) 

and reaches its largest 6 value in its end point 6 = 61, CY = 77/2, the value being given by 
about 19~ - (4/P)”3 (which is exactly the same as (3.9)). The curve is shown in figure 

from (3.1 l a )  and eliminates 4 by means of (3.11b) one finds the equation 

4(8 - cos (U) = -a2+[+ +(sin a ) / 6  + Q]. 

cos2 CY = 6 sin CY + iQ6’ - :Pa4 = M 4 ,  OSCY67T/2,  

1(b). 
The trajectories’ inclinations on curve (3.14’) follow from (3.1 l b )  and read 

d a / d 6  = $P~’/cos CY, (3.16) 

a positive definite function. It is to be compared with the d a / d 6  of the plane (3.14’). By 
differentiation of (3.14’) one finds that in the large-6 region, 1<< 6<6,, d a / d 6  of 
curve (3.14’) is larger than the inclination (3.16) of the trajectories on this curve (see 
figure l(b)).  Furthermore, the inner kinematic limit will touch curve I11 at the end point 
6 = al,  CY = 7 ~ / 2  because here 8 = O t .  Consequently, all the trajectories between the 
kinematic limit I1 and curve I11 in figure l (a)  will intersect the cylindrical plane (3.14’) at 
large 6. 

Let us now look for the cylindrical planes on which 8 = 0. Equation (3.15) shows 
that we have either 4 = 0 or + = -(sin a)/6 - Q on such planes. The first solution 

t If one derives the equation of the inner kinematic limit for large 0 and (Y - ~ / 2 ,  one will find an equation of 
the type M4 = C cos2 CY, where C is a function of P and Q. 
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yields the plane M4 = 0 in (3.1 l a )  or (3.1 IC) .  This plane lies somewhat to the right of 
plane I11 and also touches it at the maximum 6 = 61, a = n-/2. Left of the plane M4 = 0, 
a S n-/2, we have 8 > 0, whole right of this plane and above the inner kinematic bound 
in the upper half-plane a 2 n-/2 we have 8 < 0 up to curve IV in figure l(a).  

Consequently, all the trajectories between plane (3.14’) and M4 = 0 (among which is 
the solution trajectory) pass the perpendicular in the end point of curve (3.14’). On this 
perpendicular they have 8 = 0, that is, they reach their largest 6 value 6 = al, the same 
for all these trajectories. Between these planes 4 is positive, that is, cp(t) increases here 
for a short time. (Equally well, 4( t )  increases between the two curves V in figure l(a).) 

The trajectories return into the small-8 region from above (see figure 1 ( a ) )  and pass 
the plane a = n-/2 at a value of 6 that is greater than 6, = 0. Thus, the inner kinematic 
limit is a limit-cycle for the solution trajectory. 6 oscil!ates between a,,, = 6, and a 
8,,, approaching 1 for t + 00 (nutations), a oscillates between values of a + ~ / 2  + am 
and a + 7r/2 - am (oscillations about the position of stability a = n-/2, see $ 2). In the 
mean over many periods of time we have (4) = 0, that is, (4) = (d), though / + I m a x  is 
much greater than /8,1m,,. The angular velocity of mass centre about the z axis, d+/dt, 
reaches its maximum at large 8 ,  where it is negative definite and nearly equal to P62w. 
The mass centre thus slowly gyrates about the z axis, the slower the greater w. 4 + 8, is 
obviously always negative. This unidirectional motion in cp + + corresponds to the 
rotational sense of the body, since (3.4) and (3.6b) show that both 4 and (d change sign if 
f13 is multiplied by - 1. 

4. Stabilisation 

The force fr  is given by 

f, = (g/2z4)(e sin a +4r/z)  

if r/z <( 1 and e<< 1. We know the r / z  term from § 2. As we saw in 0 3, the e term is 
positive definite, that is, it enforces the effect of the r/z term. The mass centre thus 
moves away from the z axis, though slowly because f r  << fi. 

We can get a sign-changing fr  if we allow for a non-zero angle y between the third 
axis and the dipole. To avoid the exertion of great centrifugal forces on the dipole, we 
separate the body into a flywheel and a platform, in the centre of which the dipole rests 
(figure 2). Let the old 8, cp, + be the Euler angles of the flywheel and e’, cp’, +‘ those of 
the platform with reference to the axes of O‘XYZ. We have 0 ’ =  O and c p ‘ =  cp, that is, 
there is only one additional degree of freedom, $’. The kinetic energy of motion of the 
platform relative to the mass centre is 

41,(6’+4’sin~ 0)+41,,(4 cos o + $ ‘ ) ~  (4.1) 

which must be added to  the Lagrange function. The first term only enlarges I by Ip. The 
second term is small compared with the analogous term of the flywheel because we are 
interested in the case R,, << f13 and initially flp3 = 0 so that the dipole moves slowly. (a, 
remains a constant of the motion.) 

Let /3 be the azimuth angle of the dipole in the plane of the platform. The angles p 
and y can be varied by inner forces. Let O‘x‘y‘z’ be a system of rectangular axes fixed 
relative to  the platform. The unit vector in the direction of the dipole is e h =  
(sin y cos p, sin y sin p, cos p )  in this frame of reference. Applying the transformation 
matrix for the transition from O‘x‘y‘z’ to O‘XYZ in Euler angles (Whittaker 1955) to 
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Figure 2. In the plane of a platform P of mass mp a massive ring of mass m is rotating. The 
dipole M rests relative to P in the mass centre. Its direction isgiven by an angle y and, in the 
x ’ y ’  plane, an angle p.  Friction in the bearings and mass of the dipole are neglected. 

this vector, we find e M  with reference to the axes of O’XYZ. This then gives us for the 
potential energy: 

-MH = -MH, sin y[cos($’- cp + 4 + p )  - (1 + cos 0)  sin a sin ($’+ p)] 
(4.2) 

-MH, sin y sin 0 sin($’+ p )  - (MH)old cos y 

where (MH),ld is expression (1.3), H, and H, being given by (1.4). 
The third term reproduces the equations of motion in 0 3, the ‘cos y’ only weakens 

the ‘coupling constant’ g. What is the meaning of the other terms for the motion in the 
0cp4 space? 

The new expression for f, at small r/z and is 

fr=:[sin g ycos ($ ’ -cp+4+p)+es ina  cosy+4(r /z )cosy] .  (4.3) 
22 

We are interested in an f, that can be kept at zero and therefore choose p such that 

(Cr’-cp+4+P= 7T. (4.4) 
We can now keep fr equal to zero by varying sin y if w is so large that 

Because of the choice (4.4), the first term in (4.2) cannot contribute to the equations 
of motion of cp or 4. The second term is smaller than the corresponding term in (MH)oLd 
by a factor of Gy and can be neglected. The third term in (4.4) contributes to the 
equation of motion of e but not to the equation of motion of cp and 4. Instead of h, sin CY 

on the RHS of ( 3 . 5 ~ )  and energy conservation (3.8), we now have (h ,  cos y -  
h, sin y)  sin a, where we made use of (4.4). This is the torque about the line of nodes. A 
positive y makes it smaller and thereby reduces em,,. An even larger y makes the 
torque negative. Then the gradient field remains unchanged if only the sign of a is 
changed. In other words, the system behaves in ecp4 space in the same way as in the case 
of a positive torque, the only difference being that a oscillates about - ~ / 2 ,  the present 
minimum of the potential energy with respect to a. 

Let us write down the equation of motion for Op3,  the angular velocity of the 
platform about its third axis 

d 
dt  

sin y. 

Ip3 - Op3 = - MH, sin y sin ( $ ’ - cp + 4 + p ) + MH, (sin y ) e cos ( $ ’ + /3 ) . (4.5) 
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According to the choice (4.4), the first term disappears and the second term oscillates as 
8 cos cr about zero. In the mean, it thus makes a time-independent small contribution 
to (ap3). For cos 0 - -1, however, we have Op3 - -4 +if, and then, it follows from 
(4.4) that Op3 - -4  - p, so that we can keep Op3 very small by varying p in the same way 
as 4 varies, but opposite in sign. 

, .  

4. I. Neglecting the nutations 

If the rotational energy of the flywheel is sufficiently high and y not too small, we can 
neglect the 6 terms in (4.3) and (4.5). Force fr  takes on the simple form 

fr = (g/2z4)[-sin y +4(r/z)cos 71. (4.6) 
In this approximation, 6 = 0, Op3 = 0, planes x ' y '  and X Y  are parallel, and the 

difference $'- cp is their relative orientation. Let us call $'- cp = 6. 
As has already been explained, the value (4.4), which made it possible to controlf, in 

(4.3) by varying y, is an energetic maximum and, therefore, unstable. Small pertur- 
bations of C#I or 6 will induce an exponential change of the difference 6 + 4 + p - T. 

Expanding (4.5) and (3.5~) at 6 + 4 + p - 7~ - 0, one can show that this difference can, 
nevertheless, be kept in the vicinity of zero by appropriately varying p. In other words, 
the form (4.6) of f i  can be stabilised in this way. 

On the other hand, 8-4  cannot be kept constant. It will, in dependence of the 
perturbations, change if form (4.6) is stabilised. This change means that the x ' y '  plane 
cannot be prevented from rotating to the X Y  plane while the mass centre simul- 
taneously rotates about the z axis. 

4.2. Piloting the device 

Not only can the angle y in (4.6) be used to keep f r  at zero, it can also be varied in such a 
way that the mass centre describes a certain path. Let us, for example, examine the case 
where the mass centre moves in the sector r/z  << 1, y # 0 is constant, and the azimuthal 
component of the dipole is parallel to H,, i.e. has a stable direction. Then 

) (4.7) ) Z 

r f r = & i j s i n y + 4 - c o s y  r , f z=$(cosy -2 - s iny  . 
Z 

Let ro be very small. What is the asymptotic inclination of the trajectory? This problem 
can be solved by the methods in 0 2.2. However, if there is a great initial linear 
momentum in the z direction, the problem can be solved directly?. 

t Since then r/z will remain much smaller than tan y. We can neglect the r/z terms for all y # 0 and y # ~ / 2 .  
As io is large, we can also neglect the increase of io in the field. The equation of the trajectory (2 .6)  takes the 
form 

(4.8) 

where C = $g/zi is the ratio of the initial potential energy at y = 0 to the kinetic energy (by supposition 
C<< 1). This is a linear first-order equation for dr/dz which can be solved in general. We find 

dZr /d t2  =$C(sin y ) ~ - ~ - $ C ( c o s  y ) Y 4  dr/dz 

dr/dz -$(sin y)( l  - Y 3 )  (4.10) 

for dr/dz, = 0 in the approximation of C(cos y)  cc 1. The asymptotic inclination is thus equal to aC(sin y). If 
C decreases, this inclination can be kept constant by letting y increase. If y has become as large as ~ / 2 ,  
however, dr/dz decreases as C. A t  these large values of y, the mass centre is primarily accelerated by the 
transverse force component fr 
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We can also give the trajectory r(z) and calculate from (2.6) the dependence of y on 
z that leads to this trajectory. Let us for instance examine the case where the device 
departs to infinity on a straight line r = Az, 0 S A < 00 (a spiral about the z axis for 4 # 0), 
or comes down from infinity on such a line to the external field’s centre. Because 
d2r/dz2 = 0, the differential equation (2.6) is particularly simple. Using the unap- 
proximated expressions (1.4) of H, and H, in (4.7), we find 

tan y = 2 A / ( A 2  - l ) ,  O z = y s - m  (4.9) 

There is no dependence on position; for a straight line r = A(z - l), for example, y 
would depend on the position. 
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